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TEACHING ROBUST METHODS FOR
EXPLORATORY DATA ANALYSIS

by

Andrew F. Siegel
Princeton University

ABSTRACT

This paper is an introduction to some of the ideas of robust
statistical methods as was presented to the Fourth International
Congress for Mathematical Education, session on Exploratory Data
Analysis.

Most statistical methods taught and used today are very
sensitive to bad or atypical data and can give meaningless
results in their presence. Robust methods protect against these
undesirable effects and can be incorporated into the feaching of
statistics at all levels of complexity. We discuss the need for
robust methods to supplement (not replace) standard procedures,
suggest some considerations regarding teaching, and review some

of the fundamental concepts of robust estimation.
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Robust Methods for EDA

Robust methods, which protect against undesirable effects

of unusual observations in the analysis of data, can easily

be incorporated into the teaching of statistics at all levels. ;7
Because many of the basic concepts are simple, robustness f

can and should be discussed when the student is being introduced

to statistical ideas.
Robustness should complement, not replace, standard

statistical tools such as means, variances, least squares

estimates, and other methods based on assumptions such as
the normal distribution. In fact, many statisticians now '
recommend that a robust analysis be used routinely to help r
assess the validity of a more classical analysis, hecause
hidden structure or problems with the data are often brought

to light. If the classicél and robust analyses approximately
agree, this can be taken as a confirmation of the classical
results by a secondary analysis. But when they disagree, there
is work to be done because either errors in the data need to x
be corrected, or else unexpected structure remains to be dis-
covered and explained.

The need for statistical robustness can be seen even in the

—M‘_“ -“ L

basic problem of finding an "average" value to summarize a
list of numberﬁ. For example, to summarize the five numbers

7’ 8’ 6‘ 4! 100 »

the arithmetic mean is
7+8+6+4+100
Mean = 5 = 25

which is not a typical value! For some real-life problems,

25 would be the proper summary; but it is often better to

i e e g s




summarize the reasonable portion of the data (7,8,6, and 4) and to
study exceptional values (like 100) separately, for example,
to decide if they are interesting special cases for further
study or simply in error,

The median is a robust measure of average which has half
of the numbers smaller and half larger than itself. For this
data set, it is

Median = Middle value of (4,6,7,8,100) = 7 ,

which we see is a typical value.

=IOGSE * -

° 1 80 . 100
MEAN

MEDIAN ,

Robustness, formally, is protection against unusual data
and violated assumptions. A few atypical or "bad" observations
can .ruin an ordinary analysis, but will have only a very limited
effect on a robust analysis. Using robust methods is
analogous to taking out an insurance policy for protection

against the presence of bad data: the insurance premium is paid

as an increase in sampling variation or efficiency of the estimate.

In real data, errors are often present, and this "insurance”" can
be vital. Robust methods also help in the detection of outliers
(atypical data), which can be very useful in error detection.
The teaching of robustness can proceed at many levels:
simple or complex, pencil or computer, in-class or independent
project. It can be taught separately as a section by itself,

but is also easily integrated with other statistical topics.
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For example, after teaching a new standard procedure, some time
can be spent discussing methods of "robustifying" that method.
The use of examples is crucig]. of course, to teaching any
statistical ideas and maintaining student interest; pictures
and graphic displays should be used frequently.

To illustrate some robust methods for location (average)
estimation, consider the attention spans of 10 hypothetical

students:
5,18,15,2,8,55,11,3,9,8 minutes
The arithmetic mean (not robust) is

5+18+...+8 .
mean = 10 = 13.4 minutes

The 10% trimmed mean (robust) is formed by

(1) ordering the data from smallest to largest, (2) trimming
(removing) 10% of the data from each side, and (3) taking the

arithmetic mean of what remains.

1) order: 2,3,5,8,8,9,11,15,18,55

2) trim 2 and 55
3+5+,..+18
3) 10% timed near = —_—f— 9.6 minutes

The median (very robust against atypfical values) fis

8+9

median = 2 = 8.5 minutes.

These estimators (mean, trimmed mean, median) are all examples

of a rich family of location estimators callgd L-estimates,
which are linear combinations of order statistics.

Another useful class that also includes robust members is
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the M-estimates which generalize least squares and maximum

likelihood procedures. These include the arithmetic mean,
which minimizes the sum of squared deviations
z (x;-0)% .
i=1

In place of squaring, M-estimates allow a function p that
can be less sensitive to outliers. We minimize

n

z p(xi-e)
i=]
by differentiating and solving
n
z w(xi-e) = 0
is=l
where ¢ = (constant) . (dp/de). Different choices of p lead
to different M-estimates with different properties: Some
examples are given in Figure 1.

The median, an M-estimate with p(x) = |[x| , is extremely
res{stant to bad data but suffers from “"granularity", a lack
of responsiveness to data near the central value. The Huber
choice for p corrects this problem: near zero, it is like the
mean, allowing data near the average to “"fine-tune" the estimate,
while maintaining resistance to bad data by behaving like the
median away from the middle. Tukey's Bisquare also combines
efficiency and robustness, but has a ¢ that is "redescends" to
zero; in effect, this says that data that are very far from the
middle will not be believed, and will have zero effect on the
estimate.

For easy pencfil-and-paper calculation, L-estimates are

preferable, because the minimization step for M-estimates (other
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FIGURE 1. Examples of M-estimates
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than the mean and median) is best attempted with a pocket

f calculator or computer.

The prooortion of bad data that an estimation procedure
' can tolerate and still return a sensible answer is its Break-
down Value. The mean has a breakdown value of zero, because
by changing the value of even a single number, the mean can

be forced to assume any value as in Figure 2a. The median
has a breakdown value of 50% because almost half of the data
must be changed before the median breaks down completely,

as illustrated in Figure 2b. Note that extreme observations do
have an effect upon the median (compare the second and third
parts of Figu}e 2b). Also note that when 3 of 5 points (more
than 50%) are moved, the median breaks down as shown,in'
Figure 2b. Breakdown Values of trimmed means lie in between
those of the mean and median;for example, the 10% trimmed

mean has a Breakdown Value of 10%.

it
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FIGURE 2a. The mean has 0% breakdown value.
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FIGURE 2b. The median has 50% breakdown value.
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One measure of robustness of an estimate is provided by ;1

measuring the effect of adding a new point

X

..«..._._--,A__

to a sample

XyoooesXp. The Influence Function of the estimate 5 at the

value x 1is defined to be

I,(x,8) = (n+1) {5(x1....,xn.x)-é(xl....,xn)}

For example, if 6 is the mean (in)/n, we can calculate

I.(x,X) = x-X .

Plotting I,
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we see that the mean has an unbounded Influence Function, and
is therefore not robust because there is no limit to the effect

a single new point can have on the mean. For M-estimates, I, is

very much like ¢.
Several alternatives exist for estimating scale that

robustify the standard deviation:

so=\/1 I (x,-%)2
.U, n—_l-1_=1x1.-x.

The "MAD" (Mean Absolute Deviation has the median) is obtained

by replacing means by medians:

-m|)
)

MAD = Median(lxl-ml,|x2-m|,-,|xn

where m = Median (xl,...,xn

For example, an initial data set 7,8,6,4,100 has a SD = 42 but
MAD = Median (|7-7|,|8-7|,...,]100-7|) = Median (0,1,1,3,93) = 1.
The large standard deviation 42, is due to the fact that 100 is
very far from most of the data set. The MAD, 1, is smaller
because this single large contribution does not dominate.

Another robust scale estimate is the Interquartile Range,

simply the upper quartile minus the lower quartile (after ordering
- the data, quartiles are 1/4 of the way in from each end).

Linear regression, fitting a straiqght line to points in two
dimensions, can also be robustified, for example with M-estimation
techniques. However, even M estimates can break down in a

sftuation as in Figure 3. Which line do we want? The answer is

o v
G s e . ,.1‘;.'1-‘;‘;r;ﬁﬁﬁﬂm;ﬁw.,usd
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FIGURE 3. Levarage in Regression
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"both lines”. 1If the high-leverage point is in error, we prefer
a robust Tine, such as the repeated median line (Launer and
Siegel 1981). But the least squares line is preferable when that
outlying point is correct, because in this case that single point
provides nearly all our information about the slope!

A final example of the usefulness of robust methods is the
fitting of two related shapes. Consider a square with one point
distorted (dotted shape) fitted to a perfect square (solid
shape) by allowing rotation, translation, and magnification.
Figure 4 indicates the least squares fit, and the robust fit by
Repeated Medians. Because the robust method "fits what fits"
it indicates clearly that the dotted shape is identical to a
square except at one point. The least squares fit, by compro-
mising and trying to fit too much, makes this sort of inference
much more difficult. Practical application of this type of shape-
fitting has been demonstrated by -Siegel and Benson (1980) in the

comparison of fossil shapes and of human skulls.
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Robust methods are also available for correlation, time
series, and two-way analysis in addition to the location,
scale, and regression problems discussed here. For more in-
formation, we refer you to the reference list that follows.
Remember that robustness is a young field (although'its roots
] are deep in the past) and we can expect more books to become

available in the near future,

M. b W"&“w?wﬂw% R I
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